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Abstract—The problem of obtaining three-dimensional radio images of objects with increased
resolution based on the use of ultra-wide-band pulse signals and new methods of their digital
processing is considered. The inverse problem of reconstructing the image of a signal source
with a resolution exceeding the Rayleigh criterion has been solved numerically. Mathematically,
the problem is reduced to solving the Fredholm integral equation of the first kind by numerical
methods based on the representation of the solution in the form of decomposition into systems
of orthogonal functions. The method of selecting the systems of functions used, which increases
the stability of solutions, is substantiated. Variational problems of optimizing the shape and
duration of ultra-wide-band pulses have been solved, ensuring the maximum possible signal-
to-noise ratio during location studies of objects with fully or partially known signal reflection
characteristics. The proposed procedures make it possible to increase the range of measuring
systems, and also make it possible to increase the stability of solutions to inverse problems.
It is shown that the use of the developed methods for achieving super-resolution to process
ultra-wideband signals dramatically improves the quality of 3D images of objects in the radio
range.
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1. INTRODUCTION

Increasing the effective angular resolution of radio and sonar, radio navigation, and remote
sensing systems and bringing it to super-resolution makes it possible to detail images of the ob-
jects under study, solve problems of their recognition and identification, and separately observe
individual targets as part of group targets. Solving these tasks makes it possible to improve the
quality of existing and promising control systems for land, surface, underwater and aerospace ob-
jects. Currently, many methods of digital signal processing and analysis are known to increase
the effective resolution. These are, in particular, methods of reverse convolution of signals, phase
weighing coefficients, angular weighing, etc. Currently popular methods are: MUSIC (MUlti-
ple SIgnal Classification) [1], ESPRIT (Estimation of Signal Parameters via Rotational Invariant
Techniques) [2], deconvolution method [3, 4], maximum entropy method [5], maximum likelihood
method [6], methods using neural networks [7], as well as nonlinear methods [8].

The listed methods are not effective in all cases. Most of them, including MUSIC and ESPRIT,
turn out to be ineffective when active measuring systems use complex signals, in particular, UWB
(Ultra Wide Band) signals with a duration of nanoseconds. The use of such ultra-wideband signals
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potentially allows for very high resolution over a range of about 1 m. As a result, the combination
of the use of UWB signals and the achievement of angular super-resolution due to digital signal
processing will allow obtaining high-quality three-dimensional radio images of objects. Such systems
are all-weather and can operate at any time of the day.

2. SETTING THE TASK OF ACHIEVING SUPER-RESOLUTION

The signal U(ϕ, θ) received by the goniometer system when scanning a two-dimensional sector
of the survey can be expressed as a linear integral transformation [9]

U(ϕ, θ) =

∫
Ω

f(ϕ− φ, θ − ϑ)I(φ, ϑ) dφ dϑ, (1)

where Ω = Ω(ϕ, θ)—the angular area of the signal source location; I(ϕ, θ)—the angular amplitude
distribution of the signal reflected (or emitted) by the object of observation, equal to zero out-
side Ω; f(ϕ, θ)—directional pattern (DP) of the measuring system. For convenience, the Cartesian
coordinate system is used here and further, where the angles are calculated from the normal to the
antenna plane.

It is known that the angular resolution achieved during direct measurements in accordance
with (1), i.e. the ability to distinguish two closely spaced objects, is measured by the minimum
angles δϕ and δθ, at which the two point signal sources still differ separately. These angles are
determined based on the Rayleigh criterion

δϕ ∼= λ/Dx, δθ ∼= λ/Dy, (2)

where Dx and Dy are the linear dimensions of the antenna at the corresponding angles ϕ and θ
directions, λ is a wavelength. The angles δϕ and δθ they turn out to be equal to the width of the
DP, determined by reducing the radiated power by half and are denoted as ϕ0.5 and θ0.5.

The task is to obtain an image of the signal source I(ϕ, θ) with an angular resolution exceeding
the Rayleigh criterion to the greatest extent possible, based on the intelligent analysis of the received
signal U(ϕ, θ) and the known DP f(ϕ, θ) of the system. Mathematically, the problem is reduced
to an approximate solution of the Fredholm integral equation (IE) of the first kind of convolution
type (1) with respect to an unknown function I(ϕ, θ) with the maximum achievable accuracy.

In general, attempts to increase the resolution exceeding (2) by solving the IE lead to unstable
solutions, since the task belongs to the class of inverses and does not satisfy the second and third
requirements of Hadamard correctness (2nd is an unambiguity of solutions and 3rd is their stability).

The methods of digital signal processing developed by the authors, called algebraic [9–15], seem
promising, allowing to obtain a stable approximate solution of the IE (1).

3. ALGEBRAIC METHODS OF SOLUTION

Algebraic methods consist in parameterizing the problem by presenting approximate solutions
in the form of expansions over selected sequences of functions. The choice of systems of functions
is based on a priori information about the solution.

Let’s consider practically important tasks when scanning is performed using one of the angular
coordinates.

The desired distribution of I(ϕ) can always be represented as a decomposition over some com-
plete system of orthogonal functions in the domain of Ω gm(ϕ) with unknown coefficients bm

I(ϕ) =
∞∑

m=1

bmgm(ϕ) ∼=
M∑

m=1

bmgm(ϕ). (3)
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Then the received signal is U(ϕ) is expressed as a superposition of functions Gm(ϕ), which are
images of gm(ϕ) when converting

Gm(ϕ) =

∫
Ω

f(ϕ− φ)gm(φ) dφ, (4)

U(ϕ) =
∞∑

m=1

bmGm(ϕ) ∼=
M∑

m=1

bmgm(ϕ), (5)

where M is the selected number of expansion terms.

Thus, the inverse problem turns out to be parameterized, and its solution is reduced to finding
the coefficients bm [10–12], which are usually found when minimizing the standard deviation of the
function U(ϕ) from (5) from the signal under study (1) in the corner sector Φ > Ω, where Φ is the
sector in which the useful signal exceeds noise and can be measured with sufficiently high accuracy.
In practice, the boundaries of the Φ sector are often determined by reducing the amplitude of the
useful signal by half in relation to its maximum value.

Function system Gm(ϕ) of (4), generally speaking, is not orthogonal and the minimization
mentioned above reduces to solving the following system of linear algebraic equations (SLAE)

V = SB,

where B is a vector column of coefficients bm, and the components of the vector V and the matrix S
are equal respectively:

Vj =

∫
Φ

U(ϕ)Gj(ϕ) dϕ, Sjm =

∫
Φ

Gj(ϕ)Gm(ϕ) dϕ,

here

∫
Φ

U(ϕ)Gj(ϕ) dϕ =
M∑

m=1

bm

∫
Φ

Gj(ϕ)Gm(ϕ) dϕ, j = 1, 2, . . . ,M. (6)

The principal feature of SLAE (6) is their poor conditionality, which is a consequence of an attempt
to solve an incorrect inverse problem. An increase in the stability of solutions can be achieved if
the functions Gm(ϕ) turns out to be orthogonal in the domain of Φ. In this case, in the matrix S,
only the elements on the main diagonal are different from zero and the coefficients bm are easily
found

∫
Φ

U(ϕ)Gm(ϕ) dϕ = bm

M∑
j=1

G2
j (ϕ) dϕ, m = 1, 2, . . . ,M.

Thus, the problem arises of choosing such an orthonormal in the domain of Φ systems of func-
tions g̃m(ϕ), images G̃m(ϕ) of which are orthogonal in Φ.

4. SIMULTANEOUS ORTHOGONALIZATION OF THE SYSTEMS OF FUNCTIONS USED

The orthogonal functions gm(ϕ) and Gm(ϕ) can be used as their own functions and IE (1).
However, the numerical search for each of them boils down to solving unstable problems and,
consequently, to the appearance of significant errors in solving the entire problem. Even in the
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simplest case of searching for eigenfunctions, when the core of the IE is degenerate, i.e. DP of the
f(ϕ) measuring system is the DP of a one-dimensional antenna array (AA) [29]

f(ϕ) =
n=K∑
n=−K

jn exp(−ikdn sinϕ). (7)

The SLAE obtained for searching for eigenfunctions turn out to be poorly conditioned. In (7)
it is indicated: jn is the magnitude of the current at the nth emitter, d is a distance between
neighboring emitters, 2K + 1—the number of DP elements and the constant k = 2π/λ, where the
wavelength λ = 2πc/ω, c is the speed of light, ω is the frequency of radiation. It is significant that
the conditionality numbers of the corresponding matrices increase exponentially with an increase in
the number of eigenfunctions to be determined, i.e. with attempts to increase the effective angular
resolution.

Note that the construction of an orthogonal system of functions G̃m(ϕ) in the domain Φ can also
be carried out on the basis of the Gram–Schmidt orthogonalization process. In this case, however,
the resulting functions turn out to be images of functions that are not orthogonal in the domain
of Φ. In this case, the source is also represented as a superposition of non-orthogonal functions,
which significantly reduces the quality of the approximate solution.

The actual problem of simultaneous orthogonalization of systems of functions gm and Gm is
proposed to be solved on the basis of the following theorem, the proof of which is given in Appendix.

Theorem 1. Let’s define a system of N orthonormal functions gm(x) (hereafter m = 1, 2, . . . , N)
on the segment Lg and an arbitrary linear operator A generating a system of N functions G = Ag,
on the segment LG. Here G and g are N -dimensional vector columns with components Gm and gm.
Then there is a linear transformation, represented as a matrix T, such that the systems of functions

G̃m(ϕ) =
N∑
j=1

TjmGj(ϕ), g̃m(ϕ) =
N∑
j=1

Tmjgj(ϕ) (8)

on the segments LG and Lg, respectively, turn out to be orthogonal, while maintaining the condition
G̃ = Ag̃.

The results of the theorem allow us to simultaneously present the desired solution I(ϕ) of the
inverse problem under consideration and the signal under study U(ϕ) in the form of decompositions
over systems of orthogonal functions, which simplifies the analysis of the problem, increases the
stability of numerical solutions and, ultimately, allows to increase the achieved degree of superres-
olution.

Using (A.1)–(A.5) (see Appendix), we obtain

G̃m(ϕ) =

∫
Ω

f(ϕ− φ)g̃m(φ) dφ, g̃m(ϕ) =
N∑
j=1

Tmjgj(ϕ). (9)

Further, expressing the received signal in the form of decomposition

U(ϕ) ∼=
N∑

m=1

CmG̃m(ϕ),

we find, due to the orthogonality of the functions, the coefficients Cm

Cm =
1

Pm

∫
Φ

U(ϕ)G̃m(ϕ) dϕ, where Pm =

∫
Φ

G̃2
m(ϕ) dϕ. (10)
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Taking into account the entered designations, the received signal (1) can be represented as
follows

U(ϕ) =

∫
Ω

f(ϕ− φ)I(φ) dφ ∼=
N∑

m=1

CmG̃m(ϕ) =

∫
Ω

f(ϕ− φ)

(
N∑

m=1

Cmg̃m(φ)

)
dφ. (11)

Equating the integral expressions in (11), we obtain a solution to the inverse problem under con-
sideration in the form of decompositions both according to the introduced system of functions (A.5)
and according to the original system of N functions (3)

I(ϕ) ∼=
N∑

m=1

Cmg̃m(ϕ), I(ϕ) =
N∑
j=1

bjgj(ϕ), bj =
N∑

m=1

CmTmj . (12)

Next, the algorithm uses an iterative process of increasing N to increase the degree of superresolu-
tion achieved until stable solutions can be obtained.

Since the inverse problem is considered, the solution of which, after parameterization, is reduced
to a SLAE solution, all the negative properties of inverse problems are preserved and transferred
eventually to SLAE solutions. In the problems under consideration, the second and third signs
of the correctness of the Hadamard problem are violated, namely: unambiguity of solutions and
their stability. The matrices S in (6) turn out to be poorly conditioned. When trying to increase
the resolution, the dimension of the S matrices increases, while the conditioning numbers increase
exponentially and reach huge values: 1010–1013, so even insignificant rounding errors lead to in-
adequate solutions. The presence of noise and measurement errors further worsens the situation.
The direct solution of SLAE by known numerical methods of linear algebra does not lead to a
satisfactory result.

At the same time, the values of the conditioning numbers of matrices of type T from (8), (9) are
many times—and the orders are less than those of matrices S. This circumstance is an indicator
of the higher stability of solutions obtained on the basis of Theorem 1, in comparison with the
direct solution of SLAE (5), (6). Thus, the proposed approach to solving the problem (1) provides
the opportunity to use a larger number of functions in the solution representation (12) compared
to (3)–(6), which increases the angular resolution. In an alternative formulation, the developed
approach makes it possible to achieve the same level of exceeding the Rayleigh criterion as other
methods, but at a significantly higher level of noise and interference.

5. EXAMPLES OF PROBLEM SOLUTIONS

Initially, single-stage functions were selected to represent the solution in the domain Ω = [−θ0, θ0],
where 2θ0 = θ0.5, and the solution was searched based on the algebraic method briefly described
above (3)–(5). Then the search for solutions was carried out on the basis of Theorem 1 and the
relations (8)–(12), and the solutions obtained were compared.

Figure 1a of the five original functions gm(ϕ), m = 1, . . . , 5, three are shown—g1(ϕ), g2(ϕ) and
g4(ϕ). Figure 1b shows for illustration the transformed modifications of the original functions g1(ϕ)
and g4(ϕ), i.e. g̃1(ϕ) and g̃4(ϕ). Figure 2a shows the images of Gm(ϕ) source functions gm(ϕ) at
m = 1, 3, 5, and in Fig. 2b—images of G̃m(ϕ) functions g̃m(ϕ) in the domain Φ.

Two point targets with the same amplitude of the emitted signal were selected as classical
objects for the study of resolution. The distance between the objects was consistently reduced
until it was possible to obtain sufficiently stable solutions adequate to the original objects. When
objects approach each other, false sources begin to appear in the solution. Their intensity increases
dramatically with further convergence. Figure 3b shows the extreme case when they can still be
neglected.
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Fig. 1. Initial step functions (a), modified functions (b).

Fig. 2. Images of Gm original functions (a), images of G̃m modified functions (b).

Fig. 3. Solution based on the original functions (a), solution based on modified functions (b).

Figures 3a and 3b present the solutions obtained in accordance with (3)–(6), i.e. without orthog-
onalization of functions and their images, as well as solutions after the procedure of simultaneous
orthogonalization of gm(ϕ) and Gm(ϕ). The angular position of point objects is shown as a bold
vertical line, and the solution is shown as a polyline.

The results of numerical experiments have shown that by simultaneous orthogonalization it
is possible to exceed the Rayleigh criterion four times (Fig. 3b). An attempt to obtain a stable
solution to the same problem in accordance with (3)–(6) does not lead to a satisfactory result. The
resulting inadequate solution, shown in Fig. 3a, is characterized by an oscillating character with a
very large oscillation amplitude. Against the background of this solution, the true objects depicted
on the same scale as in Fig. 3b are almost invisible. The type of solution is typical for cases when
it is not possible to find an adequate solution. The conditioning numbers of the matrices used in
solving and characterizing the stability of problems differ in the presented examples by two orders
of magnitude.

It should be noted that when the number of M functions of the original system used in the
solution representation (3) changes, the systems of functions gm(ϕ) and Gm(ϕ) (9) themselves
change. This feature has little effect on the running time of the program, since the basic calculations
are performed using standard high-speed and well-developed algorithms.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023
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Fig. 4. A solution based on DOG wavelets.

Fig. 5. A solution based on delta functions.

The choice of the initial system of functions gm(ϕ) is based on a priori information about the
solution [16] and the shape of the signal received during scanning (1). Such information may include,
in particular, the size and location of the signal source localization area, monotony, smoothness of
the continuity area of the angular distribution of the amplitude of the emitted signal, the presence
of areas with a discrete distribution, the dynamic range of intensity variation, restrictions on the
gradient and other characteristics [11, 13, 16].

Figure 4 shows the solution of the inverse problem under consideration using this kind of a priori
information. It was known that in the remote sensing problem, the reflecting surface is described by
a smooth function with a smooth change in the amplitude of the reflected signal, with the possible
presence of a small-sized area with high reflection. Based on this information, a system of functions
based on DOG-wavelets was chosen to represent the solution.

Under direct observation without the proposed digital processing, the presented section has some
averaged amplitude – the upper point curve. Signal processing by the algebraic method made it
possible to identify the details of the amplitude distribution of I(ϕ). In the form of a solid thin
curve, Fig. 4 shows the true distribution of the reflected signal, the strokes represent the solution
found by the algebraic method (3)–(6), the solid bold curve is the solution obtained using the
considered double orthogonalization method.

Digital processing based on double orthogonalization has improved the quality of the solution,
especially in the area of the area with a high gradient of the reflection coefficient.

Orthogonalization of function systems allows not only to increase the angular resolution, but,
due to good stability, to obtain adequate solutions at high levels of random components.
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Figure 5 shows the solution of the problem at a high noise level in the form of a bold polyline.
The signal source consisted of two small-sized objects shown in the drawing with a thin polyline.
The amplitudes of the signals reflected from the objects differed by five times. The objects were
not resolved under direct observation. To illustrate, the figure shows the signal received during
scanning in the Ω sector—the upper curve.

To represent solutions as a gm(ϕ) system, there was selected a system of delta functions located
at the same distance from each other. In the process of finding a solution, these distances could be
changed.

In the course of numerical experiments, the minimum value of the signal-to-noise ratio (SNR)
was sought, at which it was still possible to obtain a satisfactory solution. The large difference
in the amplitudes of the reflected signals significantly complicated the solution of the problem.
False objects appeared, albeit with a small amplitude, the magnitude of which allowed them to be
neglected when presenting the final solution. As a result, a completely satisfactory stable solution
was obtained with a SNR equal to 1/3, or 10.5 dB. Many well-known methods, including [1–8], allow
us to successfully solve such problems only with an SNR of at least 20 dB. Thus, the application of
the method of simultaneous orthogonalization of systems of functions for solving inverse problems
makes it possible to detail images of objects with an angular resolution exceeding the Rayleigh
criterion at a significant level of random components of the signal. A further increase in the
achieved degree of superresolution is possible with a decrease in the level of random components—
noise in the studied signals.

6. IMPROVING THE SNR FOR UWB SYSTEMS

Currently existing UWB signal generation systems do not have sufficient energy to carry out
measurements at significant distances [17–19]. In these conditions, an important task is to increase
the range of systems by optimizing the digital processing of received UWB pulses. Optimization
consists in the development of algorithms to increase the SNR in the received signals, which ul-
timately increases the range of the systems, and also improves the quality of images of objects
with angular superresolution. Increasing the SNR increases the stability of solutions to the inverse
problems discussed above, which are significantly more sensitive than direct ones to the presence
and level of random components in the studied signals. Any linear algorithms for processing UWB
signals that increase the SNR simultaneously provide an increase in the effective angular resolution.

Known methods of calculating characteristics and optimizing them are of little use for solving
problems of optimizing the characteristics of UWB radars [20–28]. When emitting, receiving and
reflecting ultra-wideband pulses from objects, it is necessary to take into account the dispersion
dependences of the reflection characteristics of the studied objects, as well as antenna systems. As
a result of the dispersion, the shape and spectrum of the received pulse differ significantly from
the emitted one, which makes it almost impossible to use traditional methods of coherent signal
processing.

Another feature of solving problems of analysis and optimization of UWB pulses is the diffi-
culty of using well-developed spectral analysis methods in calculations, since for their successful
application it is necessary to set the amplitude and phase spectra of pulses with high accuracy.
The UWB signal, however, has an ultra-wide frequency band and, consequently, the spectral den-
sity of the pulse turns out to be small (often close to the magnitude of errors in calculations and
measurements). In particular, when receiving a signal, its spectral density is often lower than the
spectral density of noise. Under these conditions, the measurement accuracy of the amplitude-phase
spectrum required for optimization cannot be achieved.

To overcome such difficulties, it is proposed to apply to calculations related to the description
of the processes of radiation, reception, reflection and processing of UWB pulses a time domain
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analysis method based on the representation of antenna systems, reception, generation systems,
etc., as linear systems described by pulse characteristics.

The proposed unconventional approach turns out to be more convenient and accurate, since
when using it, it is necessary to know not the spectrum, but only the time dependence of the
generated signal U(t), which can be determined experimentally with sufficiently high accuracy.

7. OPTIMIZATION OF THE IMPULSE RESPONSE OF THE RECEIVING SYSTEM

Let’s set the task of searching for the impulse response hr(t) of the receiving system, which
ensures the maximum possible power gain—q2. The shape of the generated UWB pulse U(t), the
DP of the transmitting and receiving antenna systems at each of the frequencies used are considered
to be set—fe(ϕ,ω) and fp(ϕ,ω), as well as the complex frequency response of the reflection of
the object—R(ω). The specified variance dependencies allow using the Fourier transform F[..]
determine the pulse characteristics of radiation, reception and reflection of the signal:

he(ϕ, t) = F[fe(ϕ,ω)], hp(ϕ, t) = F[fp(ϕ,ω)], hR(t) = F[R(ω)]. (13)

In addition to the above characteristics, for modern systems based on antenna arrays (AA), it is
necessary to additionally take into account the mutual influence of emitters on each other. Mutual
influence is usually described using mutual complex resistances, i.e. the intrinsic resistance of
the emitter changes by the amount of a certain introduced resistance. This resistance, called
mutual resistance, depends on the distance between the emitters, measured by the ratio of the
physical distance to the wavelength—the electrical distance. Without taking into account the
mutual influence for narrow-band AA, the error in calculating their characteristics is 3–6% and
it can often be neglected. When using UWB pulses for low-frequency components, the electrical
distances between the emitters decrease several times and the resistance value increases noticeably.
In order to avoid significant errors—up to 40–50%—mutual influence must be taken into account
when constructing the pulse characteristics of UWB radars.

For two separate AA emitters numbered m and n located at a distance of dm,n from each other
with co-directional DP, their mutual complex resistance

z(kdm,n) = r(kdm,n) + ix(kdm,n),

expressed as [29]

r(kdm,n) =
1

B

π∫
0

2π∫
0

φm(ϕ, θ)φ∗
n(ϕ, θ) cos

(
kdm,n sin θ

)
sin θ dϕdθ, (14)

x(kdm,n) =
4

kdm,n

π∫
0

φm(θ)φ∗
n(θ) dθ

−
π∫
0

2π∫
0

φm(ϕ, θ)φ∗
n(ϕ, θ) sin

(
kdm,n sin θ| sinϕ|

)
sin θ dϕdθ,

(15)

where B is the normalizing factor, φm(ϕ, θ)—DP of a separate emitter.

Usually, the weakly directional DP of individual AA emitters are the same and often, especially
for flat and linear AA, do not depend on the azimuth angle. Then they can be described with high
accuracy in the form of functions φ(ϕ, θ) = cosν θ or a superposition of similar functions, where the
parameter ν describes the directivity of the emitter. In this case, the integrals in (14), (15) are
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taken explicitly [29], and the mutual effective resistance of two adjacent radiators (14) turns out to
be equal

r(kdm,n) = Γ(ν + 3/2)
Jν+1/2(kdm,n)

(kdm,n/2)ν+1/2
, (16)

where Γ(ν) is a Gamma function, Jν is a Bessel function of the order of ν. The mutual reactive
part of the resistance, normalized to its own resistance, is reduced to the form

x(kdm,n) =
2Γ(ν + 3/2)√
πΓ(ν + 1)kdm,n

− Γ(ν + 3/2)Hν+1/2(kdm,n)2
ν+1/2

(kdm,n)ν+1/2
, (17)

where Hν is a Struve function of the order ν [30].

For large AA, one can ignore the edge effects and assume that all emitters are in the same
conditions. Then the resistances of all emitters turn out to be the same, and taking into account
the mutual influence of the emitters leads to the need to use instead of he,p(ϕ, t) from (13)

he,p(ϕ, t) = F

[
fe,p(ϕ,ω)

z(ϕ,ω)

]
, (18)

where z(ϕ,ω)—the resistance of the emitter at the frequency ω, taking into account the influence
of all other emitters of the AA.

Let’s find the frequency dependence of the emitter resistance z(ϕ,ω). To this end, let’s first
consider the linear AA. For large AA with a number of 2N + 1 emitters focused in the direction
of ϕ to the AA axis (7), active resistance r(ϕ,ω) of each element represents the following amount,
which can be extended indefinitely with almost no error

r(ϕ,ω) =
N∑

n=−N

r(kdn) cos
(
kdn sinϕ

) ≈ ∞∑
n=−∞

r(kdn) cos
(
kdn sinϕ

)
. (19)

The sum of the series (19) can be represented as a closed expression. To do this, you first need to
find the sum of the next row

W =
∞∑
n=1

Jν(x)

(nx/2)ν
cos(nx sinϕ), (20)

which is called the generalized Schlemilch series [30]. Note that the values of the sum (20) are
given in the reference books only for a few special cases. In general, the sum of the series is found
in [22]. It is shown that under the condition kd < 2π/(1 + sinϕ), which is true for AA, the sum of
the generalized Schlemilch series is equal to

W = − 1

2Γ(ν + 1)
+

√
π

Γ(ν + 1/2)x
cos2ν−1 ϕ. (21)

Finally,

r(ϕ,ω) =
2
√
πΓ(ν + 3/2)

Γ(ν + 1)kd
cos2ν ϕ. (22)

The imaginary part of the resistance of each element of a large linear AA has a representation

X =
∞∑

n=−∞
x(kdn) cos(kdn sinϕ) ∼=

N∑
n=−N

x(kdn) cos(kdn sinϕ) (23)
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Numerical estimates (23) for various ν and kd from (17) show that the value of X for large linear
AA turns out to be close to zero. Thus, the resistance of each element in the composition of a
large linear AA z(kd) with good accuracy takes the value (22), which allows us to find the impulse
response (18).

The resistance of the radiator in a large flat AA is obtained twice using the sum (22)

r(ϕ,ω) =
4π(ν + 1/2)

(kd)2
cos2ν−1 ϕ. (24)

Now, using the found resistance values, we find the pulse characteristics of the radiation and AA
reception in the form (18).

Typically, the SNR for pulse signals is defined as the ratio of the square of the maximum value
of the useful signal to the RMS value of the noise U2

n

q2 =
U2
M

U2
n

. (25)

Then for narrowband signals, when the frequency band is much less than the fundamental frequency
Δω � ω0, for the viewing angle ϕ = 0 we get

q2 =
f4(0, ω0)|R(ω0)|2

N0(ω0)
, (26)

where N0 is the spectral density of noise at the frequency ω0. For UWB signals, considering noise
to be a stationary random process, (25) takes the form:

q2 =

(∫∞
−∞ hr(t)Ur(t0 − t) dt

)2∫∞
−∞

∫∞
−∞ hr(t)hr(T )K(t− T ) dt dT

, (27)

where Ur(t) is the received signal, t0 is the time when the useful signal reaches the maximum value
of UM , K(t) is the autocorrelation function of noise at the receiver input. Often in practically
significant problems, when noise can be described as white, the K(t) function is a delta function.
Then, solving the variational problem of finding hr(t) from (27), which provides the maximum
possible value of q2 up to a constant, we obtain

hr(t) = U0(t0 − t), Ur(t) = he(0) � hR(t) � he(0) � Ug(t), (28)

where Ug(t) is the generated signal, and the symbol � denotes the convolution of functions. Note
that the first two convolutions are formed by the given functions and can be replaced by a single
dependency

Hr(t) = he(0) � hR(t) � he(0), Ur(t) = Hr(t) � Ug(t), (29)

which determines hr(t) from (28), which can be called the impulse response of the optimal filter
(OF).

Most often, in communication, radar, and remote sensing tasks, noise is considered white. How-
ever, in an ultra-wide frequency band, the spectral noise density may differ markedly from the
constant, and then its shape must be taken into account when synthesizing OF. In this case,
instead of (29) from (27) up to a constant, it follows

Ur(t0 − t) =

∞∫
−∞

hr(τ)K(t− τ) dτ (30)

and now, to determine hr(t) OF, it is necessary to numerically solve the resulting integral equa-
tion (30).
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8. RESULTS OF NUMERICAL EXPERIMENTS

The problem of optimal reception of UWB pulses when reflected from an object with a smooth
increase in the value of the modulus of the reflection coefficient from the frequency R(ω) was consid-
ered and a fast-variable phase characteristic. As the spectral noise density N0(ω) the distribution
of atmospheric noise in the wavelength range of 1 m–3 cm was chosen. The DP of the antenna
system at each of the frequencies used corresponded to the DP of the antenna array with a beam
width of 2θ0 = 3◦ at the average frequency of the range used.

The results of solving the problem are shown in Fig. 6. Shows: the initial UWB pulse is a dashed
curve; the received UWB pulse without using OF is a thin solid curve; the received UWB pulse
after optimal processing in the receiver (28), (29) is a bold curve. Noticeable changes occur in
the received signal due to dispersion: —the pulse duration increases significantly; —the maximum
modulo values of the reflected signal, pronounced in the initial pulse, disappear; —the shape of
the received pulse, and therefore the shape of its spectrum, become little similar to the generated
signal.

The use of an optimal receiver for UWB signals turns out to be highly effective, since it is used in
an ultra-wide frequency band. In the given example of optimization of reception from the direction
ϕ = 0, the SNR increased by more than 150 times, which corresponds to an increase in the range
of the system by 3.7 times.

When receiving a signal from a direction other than ϕ = 0, the filter characteristic hr(t) in
accordance with (28)–(30) is no longer optimal and increases the peak value of the signal to a
lesser extent than from the direction ϕ = 0. In the given example, the optimization gain for ϕ = 0
decreased by 5 times at the boundary of the transmitting beam ϕ = θ0. The revealed pattern with
optimal filtering of UWB pulses shows that the effective width of the receiving DP for the signal
in question becomes significantly less than θ0. This effect can be used to improve the accuracy
and angular resolution of UWB systems when searching and tracking objects with known reflection
characteristics.

In practice, it is difficult to expect that the complex reflection coefficient of the object under
study, especially its phase characteristic, is precisely known. However, as numerical experiments
have shown, taking into account even partial information about the reflective properties of an
object can significantly increase the SNR—up to 0.2–0.5 from the value of the optimal q2. In the
example given, the phase characteristic of the reflection was given as a very approximate estimate.
Nevertheless, it was possible to significantly increase the SNR by about 50 times.

The obtained theoretical results and the results of numerical experiments on a mathematical
model show that optimizing the reception of UWB pulses makes it possible to increase the proba-
bility of correct detection and identification of the objects under study.

Fig. 6. The shapes of the generated and received UWB pulses.
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9. CONCLUSION

1. The proposed methods of processing received signals based on the simultaneous orthogonal-
ization of two interconnected systems of functions make it possible to increase the stability of the
inverse problems being solved and restore the image of signal sources with an angular resolution
several times higher than the Rayleigh criterion.

2. Algorithms based on algebraic methods make it possible to obtain satisfactory solutions with
a signal-to-noise ratio of 15–20 dB, and sometimes at 11–12 dB, i.e. with significantly higher values
of random components than the well-known methods described in domestic and foreign literature.

3. A priori information about signal sources allows for a targeted selection of systems of functions
to represent solutions and, thereby, increase the adequacy and stability of the solutions obtained.

4. The relative simplicity of object image recovery algorithms makes it possible to use them in
real time.

5. The variational problem of optimizing the pulse characteristics of the receiver of probing
UWB pulses has been solved. The efficiency of using the proposed algorithms for processing UWB
signals is shown, which allows 2–4 times to increase the range of UWB systems and improve the
quality of radio images.

6. It is shown that optimizing the shape of the received UWB pulses allows for known object
types to simultaneously increase the range of the systems, improve their angular characteristics
and detection and identification characteristics.
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APPENDIX

Proof of Theorem 1. The system of functions Gm(x) is generally non-orthogonal to LG. Let’s
make a Gram matrix based on it, i.e. a matrix P of scalar products with elements Pmn:

Pmn = (Gm, Gn) =

∫
Φ

Gm(φ)Gn(φ) dφ. (A.1)

Since the matrix P is symmetric and positively defined, there is a transformation T that leads it
to a diagonal form

P̃ = T	PT. (A.2)

Using the found matrix T, we introduce a new system of functions G̃m(x) in the form (9). The
resulting system turns out to be orthogonal on the segment LG, which is easily verified by directly
calculating scalar products:

(G̃m, G̃n) =
N∑

j,i=1

TjmTin

∫
Φ

Gj(φ)Gi(φ) dφ =
N∑

j,i=1

TjmTinPji = P̃mn,

where P̃mn are the elements of the diagonal matrix (A.2).

Now let’s find the system of functions g̃m(x), which generates the resulting orthogonal in the
domain LG the system G̃m(x), i.e.

G̃m = Ag̃m. (A.3)
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The required representation (9) follows

G̃m =
N∑
j=1

TmjAgj = A

⎛⎝ N∑
j=1

Tmjgj

⎞⎠ . (A.4)

Comparing (A.3) and (A.4), we obtain

g̃m(x) =
N∑
j=1

Tmjgj(x). (A.5)

The found system (A.5) turns out to be orthogonal on the segment Lg. Indeed, due to the
orthogonality of the functions gm(x) and the orthogonality of the eigenvectors of the matrix P
forming the matrix T, we have

(
g̃m(x), g̃n(x)

)
=

N∑
j=1

TmjTnj

(
gj , gi

)
=

{
0, m �= n
λm, m = n

, λm =
N∑
j=1

T 2
mj .

Note that the found system of orthogonal functions g̃m(x) is determined by the same linear
transformation T as the system of functions G̃m(x).

As a result, based on a given system of N orthogonal functions gm(x) on the segment Lg, a
new orthogonal system of functions on the same segment is constructed, generating an orthogonal
system of functions g̃m(x) in the domain Lg. The theorem is proved
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